Heliosphere’s long-theorized bow shock does not exist

 

New results from NASA’s Interstellar Boundary Explorer (IBEX) reveal that the bow shock, widely accepted by researchers to precede the heliosphere as it plows through tenuous gas and dust from the galaxy does not exist.

astrospheres image
Stars travel through the galaxy surrounded by a bubble of charged gas and magnetic fields, rounded at the front and trailing into a long tail behind. The bubble is called an astrosphere, or — in the case of the one around our sun — a heliosphere. This image shows a few examples of astrospheres that are very strong and therefore visible. Image Courtesy NASA/ESA/JPL-Caltech/Goddard/SwRI

According to a paper published in the journal Science online, the latest refinements in relative speed and local interstellar magnetic field strengh prevent the heliosphere, the magnetic “bubble” that cocoons Earth and the other planets, from developing a bow shock. The bow shock would consist of ionized gas or plasma that abruptly and discontinuously changes in density in the region of space that lies straight ahead of the heliosphere.

“The sonic boom made by a jet breaking the sound barrier is an earthly example of a bow shock,” says Dr. David McComas, principal investigator of the IBEX mission and assistant vice president of the Space Science and Engineering Division at Southwest Research Institute (SwRI). “As the jet reaches supersonic speeds, the air ahead of it can’t get out of the way fast enough. Once the aircraft hits the speed of sound, the interaction changes instantaneously, resulting in a shock wave.”
Diagram of the heliosphere with components labeled.

The heliosphere surrounding our solar system is buffeted by strong magnetic fields, shown here as the black, diagonal, upward-pointing arrows. The heliosphere and the interstellar material of the local cloud pass by each other at a speed of 52,000 miles per hour, as shown by the blue arrow. The density of the material and the ramming pressures of the magnetic field coupled with the relatively slow speed of the heliosphere add up to indicate that there is no bow shock at the front of the heliosphere. Image courtesy of Southwest Research Institute (SWRI)

For about a quarter century, researchers believed that the heliosphere moved through the interstellar medium at a speed fast enough to form a bow shock. IBEX data have shown that the heliosphere actually moves through the local interstellar cloud at about 52,000 miles per hour, roughly 7,000 miles per hour slower than previously thought — slow enough to create more of a bow “wave” than a shock.

“While bow shocks certainly exist ahead of many other stars, we’re finding that our Sun’s interaction doesn’t reach the critical threshold to form a shock, so a wave is a more accurate depiction of what’s happening ahead of our heliosphere — much like the wave made by the bow of a boat as it glides through the water,” says McComas.

heliosphere as it moved through interstellar space image

The heliosphere is the region of space dominated by the Sun that cocoons Earth and the other planets. Inflated by the million-mile-per-hour solar wind, the bubble-shaped heliosphere pushes its way through the galaxy. For a quarter century, researchers believed a bow “shock” formed ahead of the heliosphere as it moved through interstellar space — similar to the sonic boom made by a jet breaking the sound barrier. New data from NASA’s Interstellar Boundary Explorer (IBEX) shows that the heliosphere moves through space too slowly to form a bow shock. Image courtesy of Southwest Research Institute

 
Another influence is the magnetic pressure in the interstellar medium. IBEX data, as well as earlier Voyager observations, show that the magnetic field is stronger in the interstellar medium requiring even faster speeds to produce a bow shock. Combined, both factors now point to the conclusion that a bow shock is highly unlikely.

The IBEX team combined its data with analytical calculations and modeling and simulations to determine the conditions necessary for creating a bow shock. Two independent global models — one from a group in Huntsville, Ala., and another from Moscow — correlated with the analytical findings.

“It’s too early to say exactly what this new data means for our heliosphere. Decades of research have explored scenarios that included a bow shock. That research now has to be redone using the latest data,” says McComas. “Already, we know there are likely implications for how galactic cosmic rays propagate around and enter the solar system, which is relevant for human space travel.”

heliosphere helps prevent charged particles from entering our solar system image

The heliosphere helps prevent charged particles from entering our solar system, protecting life from potentially dangerous galactic cosmic rays. Decades of research have examined scenarios that included a bow shock. New research applying the new IBEX data will be especially critical to helping researchers determine how galactic cosmic rays propagate around and enter the solar system, which is relevant for human space travel. Image courtesy of Southwest Research Institute
 
IBEX’s primary mission has been to image and map the invisible interactions occurring at the outer reaches of the solar system. Since its launch in October 2008, the spacecraft has also shed new light on the complex structure and dynamics occurring around Earth and discovered neutral atoms coming off the Moon.
 
The paper, “The Heliosphere’s Interstellar Interaction: No Bow Shock,” was published May 10 in the journal Science online, at the Science Express website.

Source: Southwest Research Institute (SwRI)

Share this post